
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

1

A Fine-grained Differentially Private Federated
Learning against Leakage from Gradients

Linghui Zhu, Xinyi Liu, Yiming Li, Xue Yang, Shu-Tao Xia, and Rongxing Lu, Fellow, IEEE

Abstract—Federated learning enables data owners to train a
global model with shared gradients while keeping private training
data locally. However, recent research demonstrated that the
adversary may infer private training data of clients from the ex-
changed local gradients, e.g., having deep leakage from gradients
(DLG). Many existing privacy-preserving approaches take usage
of differential privacy to guarantee privacy. Nevertheless, the
widely used privacy budget of differential privacy (e.g., evenly dis-
tribution) leads to a sharp decline of model accuracy. To improve
the model accuracy, some schemes only consider allocating the
privacy budget to the fully connected layers. However, we reveal
that the adversary may still reconstruct the private training data
by adopting the DLG attack with the gradients of convolutional
layers. In this paper, we propose a fine-grained differential
privacy federated learning (DPFL) scheme, which guarantees
privacy and remains high model performance simultaneously.
Specifically, inspired by the methods that measure the importance
of layers in deep learning, we propose a fine-grained method to
allocate noise according to the importance value of layers in
order to remain high model performance. Besides, we combine
an active client selection strategy with DPFL and perform fine-
tuning with a public dataset on the server to further ensure the
model performance. We evaluate DPFL under both i.i.d and non-
i.i.d data settings to show that our method can achieve similar
accuracy as the plain federated learning (e.g., FedAvg). We also
demonstrate that our DPFL can resist DLG attack to verify its
privacy guarantee.

Index Terms—Federated learning, Deep Leakage from Gradi-
ent, Differential Privacy, AI Security.

I. INTRODUCTION

DEEP learning, especially deep neural networks (DNNs),
has been widely and successfully adopted in many

IoT devices for its high effectiveness and efficiency. In the
meanwhile, the widespread use of IoT devices also makes
it possible to collect high-quality data from users. Since the
success of DNNs relies heavily on a large amount of training

Linghui Zhu, Xinyi Liu,and Yiming Li are with Tsinghua Shenzhen
International Graduate School, Tsinghua University, Shenzhen, China, 518023
(e-mail: zlh20@mails.tsinghua.edu.cn, liuxinyi19@mails.tsinghua.edu.cn, li-
ym18@mails.tsinghua.edu.cn).

Xue Yang is with the Information Security and National Computing Grid
Laboratory, Southwest Jiaotong University, Chengdu, China, 610031 (e-mail:
xueyang.swjtu@gmail.com).

Shu-Tao Xia is with Tsinghua Shenzhen International Graduate School,
Tsinghua University, and also with the Peng Cheng Laboratory, Shenzhen,
China, 518055 (e-mail: xiast@sz.tsinghua.edu.cn).

Rongxing Lu is with the Canadian Institute of Cybersecurity, Faculty of
Computer Science, University of New Brunswick, Fredericton, Canada, E3B
5A3 (e-mail: rlu1@unb.ca).

Corresponding Authors: Xue Yang (e-mail: xueyang.swjtu@gmail.com) and
Shu-Tao Xia (e-mail: xiast@sz.tsinghua.edu.cn).

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

data, the server (e.g., service provider) may keep updating the
algorithm based on data collected by IoT devices via federated
learning (FL) [1]. The purpose of using FL is to preserve
users’ privacy since FL allows training DNNs in a distributed
manner without the access of local data from the clients (i.e.,
IoT devices). Specifically, each client computes and uploads
local gradients to the server, which will further aggregate all
collected gradients and update the model.

Although FL improves the level of privacy-preservation,
sharing local gradients still faces the risk of sensitive training
data being leaked [2]–[4]. For example, [3], [4] demonstrated
that adversaries can reconstruct training data from shared
gradients. In order to further improve privacy, many privacy-
preserving techniques [5]–[8] have been widely adopted to
encrypt or mask the shared gradients. Among them, differential
privacy (DP) [9]–[12] is more widely used, especially in IoT
applications, for its high efficiency and simplicity. Specifically,
many recent works perturbed shared gradients by adding
Laplacian or Gaussian noise satisfying the requirement of
DP. However, due to inappropriate allocation of the privacy
budget, these works introduce too much noise, which signif-
icantly reduces the model accuracy. To alleviate the decline
of accuracy, Liu et al. [6] presented the layer-wise importance
propagation (LIP) algorithm, which allocates privacy budget
according to the importance of parameters in fully connected
layers. Since LIP [6] does not add noise to convolutional
layers, the total amount of noise is naturally lower compared
with the standard DP-based method. However, for many DNNs
with convolutional layers, this algorithm only adds noise on
the fully connected layers and therefore still having a risk
of data leakage. To verify it, we examine the LIP algorithm
with the attack proposed in [3]. As shown in Figure 1, the
adversary can still easily reconstruct training images from
gradients of convolutional layers. In general, LIP [6] achieves
high accuracy by sacrificing privacy to some extent.

In fact, improving the model accuracy while ensuring a high
level of privacy-preserving is still a challenge in many DP-
based federated learning applications. In this paper, we pro-
pose an efficient and fine-grained differential privacy federated
learning scheme (DPFL) trying to overcome these challenges.
In our DPFL, all shared gradients are perturbed by adding
Laplacian noise to ensure that all layers are under protection.
Instead of evenly allocated, we specify the privacy budget of
DP in each layer according to its importance score, which can
greatly improve model accuracy. Besides, we take advantage of
an active client selection strategy [13] and perform fine-tuning
with a public dataset to further improve the model accuracy
while preserving privacy and efficiency. These strategies are

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

2

iter=0 iter=10 iter=20 iter=30 iter=40 iter=50 iter=60 iter=70 iter=80 iter=90

iter=100 iter=110 iter=120 iter=130 iter=140 iter=150 iter=160 iter=170 iter=180 iter=190

iter=200 iter=210 iter=220 iter=230 iter=240 iter=250 iter=260 iter=270 iter=280 iter=290

(a)

iter=0 iter=10 iter=20 iter=30 iter=40 iter=50 iter=60 iter=70 iter=80 iter=90

iter=100 iter=110 iter=120 iter=130 iter=140 iter=150 iter=160 iter=170 iter=180 iter=190

iter=200 iter=210 iter=220 iter=230 iter=240 iter=250 iter=260 iter=270 iter=280 iter=290

(b)

iter=0 iter=10 iter=20 iter=30 iter=40 iter=50 iter=60 iter=70 iter=80 iter=90

iter=100 iter=110 iter=120 iter=130 iter=140 iter=150 iter=160 iter=170 iter=180 iter=190

iter=200 iter=210 iter=220 iter=230 iter=240 iter=250 iter=260 iter=270 iter=280 iter=290

(c)

Fig. 1. Recover training data via the attack of deep leakage from gradients (DLG) [3]. (a) images recovered from gradients of all layers without noise. (b)
images recovered from gradients of all convolutional layers trained with LIP [6]. (c) images recovered from gradients of all fully connected layers trained with
LIP [6]. These results indicate that the adversary can still recover training images even under the protection of LIP, highlighting the necessity of protecting
gradients of all layers for preventing data leakage.

effective, especially under the non-i.i.d data setting.

The main contributions of this work are four-folds:
• We reveal that adversaries can reconstruct training data

from the gradients of both fully connected and convo-
lutional layers. It highlights the necessity of protecting
gradients of all layers for privacy considerations.

• Inspired by the methods measuring the importance of
layers in deep learning, we design a fine-grained layer-
wise allocation algorithm of privacy budget for differen-
tial privacy where more budgets will be allocated to less
important layers to maintain high accuracy.

• We take advantage of an active client selection strategy
to improve the training efficiency while performing fine-
tuning with a public dataset on the server-side to fur-
ther improve model accuracy. Specifically, the selection
strategy can improve performance and accelerate model
convergence and therefore decreasing training costs.

• We conduct experiments on multiple benchmark datasets
under both non-i.i.d and i.i.d data settings, which verify
that our DPFL can have performance on par with that of
the plain federated learning (e.g., FedAvg) while resistant
to DLG attacks and preserving high efficiency.

The rest of this paper is organized as follows: In Section
II, we review some related works. In Section III, we briefly
introduce the preliminaries and outline the design goals of
our proposed scheme. We introduce the technical details of
our DPFL in Section IV. Section V carries out the analysis of
our model in performance, privacy preservation, and efficiency.
Finally, the conclusion of this paper is given in Section VI.

II. RELATED WORKS

In this section, we review some related studies about the
privacy challenges and defense methods in FL.

A. Privacy Challenges in Federated Learning

Federated learning (FL) [1] allows training DNNs without
the direct access of local data. As such, it is widely adopted
in the update of IoT devices whose training samples collected
from users needs protection for privacy considerations. In FL,
the global model is trained without gathering data from data
owners which ensures data security to some extent. However,

various attack methods still bring huge security threat to FL.
For example, deep leakage from gradients (DLG) [3], [4] is
designed to steal sensitive information of private local training
datasets from the shared gradients. The leakage of DLG [3]
is performed by optimizing a randomly generated image. The
cost function of DLG [3] is the euclidean distance between the
gradients of the generated image and the ground truth image.
Optimizing the distance of gradients also makes the generated
image close to the ground truth training data. Although a large
batch size makes the leakage hard to succeed, Geiping et al.
[4] succeeded to recover training data with a batch size of 8
under FL settings. They proposed to use cosine similarity as
the cost function to minimize the angle between gradients of
generated images and those of ground truth images.

B. Defense Methods in Federated Learning

Some researches have discussed the defense methods in
FL [4], [5], [14]. Considering the bottlenecks of FL, privacy-
preserving methods should not only ensure data security, but
also take model performance and efficiency into consideration.

Differential privacy (DP) [9]–[12] is a widely used mech-
anism to ensure data security for its high efficiency and
simplicity. The goal of DP is to hide a single record in
the dataset, i.e., to make the outputs of two similar datasets
indistinguishable. Some studies have taken the advantage of
DP to guarantee privacy in centralized model training [3], [7],
[8] which is inconsistent with the decentralized framework of
FL. DP provides privacy protection by adding noise which
leads to a significant drop of model accuracy due to the
inappropriate allocation of privacy budget. In the study of Zhu
et al. [3], DP is one of the possible defense strategies against
DLG [3]. However, the privacy budget is allocated evenly in
[3] which reduces the accuracy significantly. To better preserve
model performance, Liu et al. [6] introduced the layer-wise
importance propagation (LIP). It calculated the importance
value of every parameter in the fully connected layers, based
on which to allocate the privacy budget individually rather
than evenly. The more important the parameter is, the smaller
the allocated privacy budget. In particular, LIP algorithm [6]
only adds noise on the fully-connected layers which satisfies
the requirement of DP according to the composition theorems
[15]. However, as shown in Figure 1, LIP still faces the risk of

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

3

data leakage attacked by DLG [3], based on the gradients of
convolutional layers. Accordingly, the high accuracy of LIP [6]
is achieved at the cost of the privacy guarantee to some extent.
How to achieve high model performance while preserving data
privacy is still an important open problem in FL.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first give a brief introduction of differen-
tial privacy and the framework of federated learning. Then we
identify the threat model and the corresponding design goals.

A. Differential Privacy

Differential privacy (DP) was proposed by C. Dwork et al.
[9]–[12], which provides a rigorous privacy guarantee based
on probability. Its detailed definition is given as follows:

Definition 1 (ϵ-Differential Privacy [10]). A randomized al-
gorithmM gives ϵ-differential privacy for the output space of
Range(M) and any neighboring datasets D1 and D2 differing
by at most one record, if M satisfies: ∀ Y ∈ Range(M)

Pr[M(D1) ∈ Y] ≤ eϵ × Pr[M(D2) ∈ Y],

where ϵ denotes the privacy budget of differential privacy that
restricts the privacy guarantee level ofM, and a smaller value
of ϵ represents a stronger privacy level.

Currently, two classical mechanisms are widely used to
achieve ϵ-differential privacy by adding noise, including the
Laplace mechanism [10] and the Exponential mechanism [16].
The former one is more suitable for numeric queries and
the later one is more suitable for non-numeric queries [17].
Since we intend to add noise to (numeric) shared gradients,
we adopt the Laplace mechanism in our method. Specifically,
the Laplace mechanism can provide ϵ-differential privacy by
adding noise drawn from Laplace distribution, as follows:

Definition 2 (Laplace Mechanism [10]). For any function f ,
the Laplace mechanism M(D) = f(D) + Lap(∆f

ϵ) satisfies
ϵ-differential privacy, where Lap(∆f

ϵ) is a random variable
following the Laplace distribution, i.e, Pr[Lap(β) = x] =
1
2β e

−|x|
β , where the corresponding mean and variance are set

to 0 and β = ∆f
ϵ , respectively.

The parameter ∆f is the sensitivity of the function f , which
is given in Definition 3.

Definition 3 (Sensitivity [10]). For any pair of neighboring
datasets D1 and D2, the sensitivity ∆f of a function f ,
denoted by ∆f , is shown below

∆f = max
D1,D2

||f(D1)− f(D2)||1.

The proposed scheme can be regarded as a multi-step
mechanism, where the sequential composition theorem and the
parallel composition theorem of differential privacy are widely
used [15]. We introduce these two composition theorems here:

Property 1 (Sequential Composition Property [15]). Given
a sequence of randomized algorithm {M1, ...,Mk} that

∀Mi ∈ {M1, . . . ,Mk} : Mi satisfies ϵi−differential pri-
vacy. Then M(D) = ⟨M0(D),M1(D), ...,Mk(D)⟩ satisfies
(
∑k

i=0 ϵi)−differential privacy.

Client Client Client

Local data1 Local data2 Local dataK

download global model

upload local gradients

Server

1 2 K

Summit Summit Summit

Train Train Train

Fig. 2. The framework of federated learning.

Property 2 (Parallel Composition Property [15]). Given
a sequence of randomized algorithm {M1, ...,Mk} that
∀Mi ∈ {M1, . . . ,Mk} : Mi satisfies ϵi−differential pri-
vacy. ⟨D1,D2, ...,Dk⟩ are the disjoint partitioning of D.
Then M(D) = ⟨M1(D1),M2(D2), ...,Mk(Dk)⟩ satisfies
(maxi∈[1,k] ϵi)−differential privacy.

B. System Model

The framework of federated learning consists of a center
server and a number of clients, e.g., K clients denoted as C =
{C1, C2, . . . , CK}, as illustrated in Figure 2. With the help
of the server, clients can train a global model cooperatively
without exchanging data. Specifically, the roles of different
entities are explained as follows:

• Clients own training data containing sensitive informa-
tion. Since different clients are independent and even may
have no relation, the datasets of different clients cannot be
independent and identically distributed, i.e., the datasets
among different clients are non-i.i.d. In FL, each client
trains a local model with their local data in parallel and
uploads local gradients to the server.

• Server is responsible for initializing the global model
and aggregating local gradients of different clients for
model updating. Similar to [18], [19], the server also
owns a public dataset that does not contain any sensitive
information to fine-tune the global model for further
improving the learning accuracy.

C. Threat Model

Following the settings of existing works [4], [6], [20],
the server is assumed to be ‘honest-but-curious’, i.e., they
execute the proposed scheme honestly while are curious about
the sensitive training data. Specifically, the server intends
to adopt the DLG attack [3], [4] to reconstruct the training

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

4

Client K

Client 2

Client 1

Pretrain Local
 update

 Add
 noise

Calculate
POGZ for
each layer

Allocate privacy budget
with POGZ

Fedavg

Finetune with
public dataset

Global model
Boardcast to selected clients

Gradients

Client selection
with train losses and
number of train data

Server

Fig. 3. The framework of DPFL. The server chooses clients with active client selection strategy. The selected clients add noise on local gradients and then
share the noisy gradients to server. The server updates the global model and fine-tunes the global model with a public dataset.

data of clients based on sharing gradients. Other attacks are
beyond the scope of this paper and we will consider more
attack methods in the future work. The benign clients attempt
to provide privacy guarantees via DP while preserving high
model performance simultaneously, as follows:

• Privacy-preservation. The proposed scheme should en-
sure that the adversary cannot obtain the sensitive training
data of victims by deep leakage from gradients [3], [4].

• Effectiveness. Although the DP guarantees privacy by
sacrificing the model accuracy, the proposed scheme
should preserve sufficient accuracy as much as possible.

• Efficiency. In practice, efficiency in terms of compu-
tational overhead is an important factor in determining
whether a scheme is adopted. Thus, the proposed scheme
should ensure affordable overheads for both server and
clients, especially for IoT devices.

IV. PROPOSED SCHEME

In this section, we introduce our proposed fine-grained
differential privacy federated learning (DPFL) scheme. We first
give the overall procedure of the proposed scheme (as shown
in Figure 3), and then introduce each step in detail. We prove
that DPFL satisfies differential privacy in the end. Before we
provide technical details of DPFL, we first give the description
of notations used in the proposed scheme in Table I.

A. Overall Procedure

Our DP-based scheme mainly includes four steps:
• Step 1: Identifying layer importance. Each client pre-

trains the local model with their local data and calculates
the importance value of each layer.

• Step 2: Client selection. During the t-th global update
epoch of model training, the server first selects a subset
of clients S(t) ⊆ C (the size of S(t) is |S(t)| = K × λ,

TABLE I
NOTATIONS USED IN THE PROPOSED SCHEME.

Symbol Description
C = {C1, . . . , CK} The set of clients

S(t) Subset of clients in the t-th iteration
λ The fraction of selected clients
nk The number of Ck’s training data

v
(t)
k

The selected evaluation value
of Ck in the t-th iteration

w(t) Global model in the t-th iteration
∇g(t)k Gradients of Ck in the t-th iteration

∇̂g(t)k Gradients with noise
α The bound of gradients
ϵ Privacy budget

∆f Sensitivity of DP

O(i) Output before activation function
of the i-th layer

η Learning rate
α1, α2, α3 Tuning parameters of client selection

where λ is the ratio of selected clients) to attend current
iteration according to the train losses and the number of
training data of each client. Then, the server broadcasts
the current global model to all selected clients.

• Step 3: Noisy gradients computation. Based on the
stochastic gradient descent (SGD) technique, each se-
lected client Ck ∈ S(t) first computes local gradients
∇g(t)k with local training data and the received current
global model. Then, Ck adds Laplacian noise to com-
puted local gradients according to the importance of each

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

5

layer and uploads the noisy local gradients to the server.
• Step 4: Model update. Similar to FedAvg [1], the server

aggregates and updates the current global model as:

w(t+1) = w(t) − η

Ck∈S(t)∑
k

(nk/n)×∇g(t)k ,

where n =
∑K

k=1 nk and nk is the number of training
data of Ck, η is the learning rate. After that, the server
fine-tunes the updated model w(t+1) with a public dataset
to ensure a higher learning accuracy [18], [19] and then
distributes it to the selected clients for the next iteration.

The server and clients interactively perform the steps (1)-
(4) until the convergence, and thereby obtaining a well-
trained global model for prediction. In the following, we will
introduce each step in detail.

B. Identifying Layer Importance

As explored in [6], allocating privacy budget according
to the importance of parameters can alleviate the decline
of accuracy. However, the proposed method in [6] does not
take convolutional layers into consideration which brings
security risks. Besides, allocating privacy budget according
to the importance of layers may probably further improve
the accuracy of the learned model. Inspired by the Average
Percentage of Zeros (APoZ) [21] algorithm which is widely
used to decide the importance of layers due to its efficiency
and high ratio of pruning, we propose a fine-grained layer-
wise algorithm Percentage of numbers Greater than Zero
(PoGZ) to measure the importance of each layer, thereby
allocating privacy budget ϵ. Specifically, the layer importance
computation mainly includes two phases: pre-training and
layer importance calculation, as follows:

• Pre-training: Before starting the training process of fed-
erated learning, each client first pre-trains local models
with their own local training data.

• Obtaining layer importance: Each client runs the pre-
trained local model on local validation set and calculates
the importance of each layer. We use the PoGZ in the
output vector before activation function of a layer to stand
for the importance of this layer, defined as follows:

PoGZ(i) =

∑N
p=1

∑M
j=1 f(O

(i)
j (p) > 0)

N ×M
, (1)

where O
(i)
j (p) is the j-th element in the output vector

before activation function in the i-th layer when the p-th
validation sample is the model input. M is the size of
O(i)(p) and the total number of validation sample is N .
f(·) is an indicator function satisfying that f(·) = 1 if
the evaluated event is true and f(·) = 0 otherwise.

C. Client Selection

To alleviate the decline in accuracy, we utilize an active
client selection strategy [13] that the server selects an optimal
subset of clients based on the local training loss and the
quantity of training data, instead of random clients selection.

Algorithm 1 Clients selection.
Require: The client set C = {C1, C2, . . . , CK} and the

fraction λ of selected clients in the t-th iteration, the corre-
sponding selected evaluation values v(t) = {v(t)1 , ..., v

(t)
K },

tuning parameters α1, α2, α3, the number of clients K.
Ensure: Subset of selected clients: S(t)

1: function CLIENTSELECTION(C, λ, v(t), α1, α2, α3,K)
2: Sort clients by v

(t)
k

3: m = λ ·K
4: For the α1 ·K clients with smallest v(t)k , directly set

v
(t)
k = −∞

5: for k ∈ [1,K] do
6: p

(t)
k = eα2v

(t)
k

7: end for
8: Sample (1− α3)m clients according to their p(t)k and

thereby producing a set S′

9: Sample α3m clients from the remaining clients uni-
formly at random, and thereby producing a set S′′

10: S(t) = S′ ∪ S′′

return S(t)

11: end function

The client selection strategy actively adapts to the state of
the model and the data on each client which enhances the
performance of FL [13]. The details of client selection are
shown in Algorithm 1, which mainly includes four steps:

• Selected evaluation calculation: The selected evaluation
value v

(t)
k of each selected client in the (t− 1)-th global

update is calculated based on training loss and the number
of training data as:

v
(t)
k =

nk∑
k nk
× Loss

(t−1)
k , Ck ∈ S(t−1)

v
(t−1)
k , otherwise

,

where nk means the number of Ck’s training data and
S(t−1) is the subset of clients chosen by the server in
the (t−1)-th update epoch. Note that none of the clients
have been selected in the first global epoch. As such, we
directly select m clients randomly where m = λ · K.
Specifically, only if the Ck has been selected in the (t−
1)-th iteration, the v

(t)
k is updated.

• Sort and dropout: Sort the clients by v
(t)
k . In order to

make the clients that are not selected in the (t − 1)-th
round have the chance to be selected in the next round,
we drop out α1K clients with the smallest v(t)k .

• Probability value calculation: A probability value p
(t)
k is

calculated with a hyperparameter α2 and v
(t)
k as:

p
(t)
k = eα2v

(t)
k .

• Sampling: Sample (1 − α3)m clients according to their
p
(t)
k and sample α3m unselected clients randomly.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

6

D. Noisy Gradients Computation

In order to provide privacy guarantee with DP and ensure
the accuracy, clients allocate the privacy budget according to
PoGZ and add noise on the gradients before sharing them
with the server. Concretely, each selected client Ck ∈ S(t)

first trains the local model with the received global model and
their own local training data. Then, Ck allocates the privacy
budget of DP according to the PoGZ computed in Eq. (1),
and injects the Laplacian noise into the computed gradients
accordingly. Finally, Ck submits the noisy local gradients to
the server for model update. Algorithm 2 gives a description of
the noisy gradients computation phase, which mainly includes
the following four steps:

• Local training: The selected client Ck ∈ S(t) trains the
local model with local training data to obtain the local
gradients ∇g(t)k and bounds the gradients [7], [8] as:

∇g(t)k =
∇g(t)k

max(1,
||∇g

(t)
k ||1
α)

. (2)

Note that the role of the operation in Eq. (2) is to limit
the value of gradients to satisfy −α ≤ ∇g(t)k ≤ α, which
can help determining the sensitivity of DP.

• Privacy budget allocation: The i-th layer gets DP budget
ϵi according to the PoGZ(i) as follow:

ϵi =
PoGZ(i)∑
PoGZ(i)

× ϵ. (3)

• Noise injection: For the i-th layer, Laplace noise is added
as:

∇̂g(t)k (i) = ∇g(t)k (i) + Lap(
∆f

ϵi
), (4)

where the sensitivity is ∆f = 2× η × α.
• Transmission: After noise injection phase, clients share

the noisy gradients to the server-site. Besides, the mean
loss of clients is shared as well in order to calculate the
selected evaluation value v

(t)
k .

E. Model Update

In the last step of DPFL, the server needs to update the
global model with noisy local gradients and fine-tune it with
a public dataset in order to ensure the accuracy. The process of
model update is shown in Algorithm 3, which mainly contains
the following two steps:

• Aggregation: After receiving noisy local gradients from
clients, the server implements FedAvg [1] to update the
global model as:

w(t+1) = w(t) − η

Ck∈S(t)∑
k

(nk/n)× ∇̂g(t)k ,

where n =
∑K

k=1 nk.
• Fine-tuning: In order to further improve the learned

accuracy, the server needs to fine-tune the updated global
model with a public dataset.

Algorithm 2 Noisy Gradients Computation

Require: Global model of the t-th global iteration w(t),
privacy budget ϵ, the bound of gradient α.

// Run on Ck

Ensure: Ck’ local gradients of the t-th global iteration with

noise: ∇̂g(t)k , mean loss of Ck: Loss(t)k

1: function CLIENTUPDATE(w(t), ϵ, α, k)
2: w ← w(t)

3: Loss
(t)
k = 0

4: for each local epoch do
5: for Batch b ∈ LocalDataset do
6: ∇g = ∇wLoss(w, b)

7: Loss
(t)
k = Loss

(t)
k + Loss(w, b)

8: w = w − η∇g
9: end for

10: end for
11: ∇g(t)k = w(t) − w

12: ∇g(t)k = ∇g(t)k /max(1, ||∇g(t)k ||1/α)
13: ∆f = 2× η × α

14: for i-th layer in w do
15: ϵi = (PoGZ(i)/

∑
PoGZ(i))× ϵ

16: ∇̂g(t)k (i) = ∇g(t)k (i) + Lap(∆f/ϵi)

17: end for
18: Loss

(t)
k = Loss

(t)
k /size(LocalDataset)

return ∇̂g(t)k , Loss
(t)
k

19: end function

Algorithm 3 Global Update
1: Clients pre-train local models and calculate PoGZ for each

layer.
2: Server Site :

3: Initialize w(0)

4: for each round t = 0, 1, 2, ... do
5: S(t) = ClientSelection(C, λ, v(t), α1, α2, α3,K)

6: for Ck ∈ S(t) in parallel do
7: ∇̂g(t)k , Loss

(t)
k =ClientUpdate(w(t), ϵ, α, k)

8: v
(t+1)
k = (nk/n)× Loss

(t)
k

9: end for
10: w(t+1) = w(t) − η

∑Ck∈S(t)

k (nk/n)× ∇̂g(t)k

11: Fine-tune w(t+1) with public dataset.
12: end for

After fine-tuning, the server distributes the updated global
model to the selected clients for the next iteration. And the
selected clients start noisy gradients computation again.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

7

F. Privacy Analysis

In this section we show the proof that the noisy gradients

which is noted as ∇̂g(t)k satisfies ϵ−differential privacy.

Theorem 1. The proposed DPFL satisfies ϵ-differential pri-
vacy when ϵ = maxk∈[1,K] ϵk, where ϵk is the privacy budget
of Ck and K is the number of clients.

Proof. Assuming there are two neighboring datasets D1 and
D2. In order to calculate the sensitivity of ∇g(t)k , the gradients
are clipped during training as shown in Eq. (2) and α is the
bound of gradients (i.e.,∇g(t)k ∈ [−α, α]). Thus, the sensitivity
∆f in the i-th layer can be calculated by:

∆f = max
D1,D2

||∇g(t)k (i,D1)−∇g(t)k (i,D2)||1

= 2× η ×max ||∇g(t)k ||1
= 2× η × α

where η is the learning rate.
The privacy budget is allocated as Eq. (3) and Ck adds

Laplace noise to the gradients of i-th layer before sending it
to the server as Eq. (4). Thus we have:

Pr(
̂∇g(t)k (i,D1) = Y)

Pr(
̂∇g(t)k (i,D2) = Y)

=
Pr(∇g(t)k (i,D1) + Lap(∆f

ϵi
) = Y)

Pr(∇g(t)k (i,D2) + Lap(∆f
ϵi

) = Y)

=
Pr(Lap(∆f

ϵi
) = Y −∇g(t)k (i,D1))

Pr(Lap(∆f
ϵi

) = Y −∇g(t)k (i,D2))

=

ϵi
2×∆f × e

−|Y −∇g
(t)
k

(i,D1)|×ϵi
∆f

ϵi
2×∆f × e

−|Y −∇g
(t)
k

(i,D2)|×ϵi
∆f

≤ e
ϵi×|∇g

(t)
k

(i,D1)−∇g
(t)
k

(i,D2)|
∆f ≤ eϵi .

Thus, the i-th layer of the shared gradients satisfies
ϵi−differential privacy. According to Theorem 1, if the i-th
layer satisfies ϵi-differential privacy, the shared noisy gradients
of Ck satisfies ϵk-differential privacy where ϵk =

∑
i=1 ϵi. In

FL, local datasets are independent and clients can be seen as a
parallel sequence C1, ..., CK . Therefore according to Theorem
2, if the shared gradients of Ck satisfies ϵk−differential
privacy, the global FL satisfies ϵ−differential privacy, where
ϵ = maxk∈[1,K] ϵk and K is the number of clients.

V. EXPERIMENTS

In this section, we evaluate DPFL in terms of model
performance, privacy preservation, and efficiency. For model
performance, we compare the accuracy of DPFL with the plain
FedAvg [1] without any noise on three different datasets under
FL scenario. For privacy preservation, we use the DLG attack
methods with euclidean distance cost function [3] and cosine
similarity cost function [4] to attack DPFL under different
privacy budgets. Besides, we illustrate the necessity of adding
noise on every layer of the shared gradients by extensive
experiments. Finally, we compare the efficiency of DPFL and
the LIP [6] in terms of computational cost.

A. Experimental Setups

We use PyTorch to implement DPFL and run the experi-
ments with GeForce GTX 1080.
Datasets. We evaluate the performance of the proposed
scheme based on MNIST [22], Fashion-MNIST [23], and
CIFAR10 [24]. MNIST and Fashion-MNIST both contain
60,000 1x28x28 images in 10 classes which include 50,000
training images and 10,000 test images. CIFAR10 contains
60,000 3x32x32 images in 10 classes, including 50,000 train-
ing images and 10,000 test images.
Model Architectures. We use the same model architecture
in the experiments of MNIST and Fashion-MNIST: two 5×5
convolutional layers each followed by a sigmoid layer and then
a fully connected layer with 588 neurons. The model in the
experiments of CIFAR10 consists of three 5×5 convolutional
layers each followed by a sigmoid layer and then a fully
connected layer with 768 neurons.
Settings of clients. We assume that the FL contains 100
clients, i.e., K = 100. All clients use the Adam optimizer
with a learning rate of 0.01 (η = 0.01). In the experiments
of MNIST and Fashion-MNIST, each client contains only two
classes of samples which means the local datasets are non-
i.i.d. Batch size is set to 128. In the experiments of CIFAR10,
training samples are divided equally to each client as their
local training data. Each client owns 10 classes of samples
and the size of each class is equal. Batch size is set to 50.
Settings of the server. In each global epoch, 10% of the
clients (λ = 10%) are selected to update the global model. In
the experiments of MNIST and Fashion-MNIST, we sample
1,000 images randomly from the test set to simulate the public
dataset for fine-tuning. In the experiments on CIFAR10, the
public dataset includes 3,000 samples, randomly sampled from
the original test set as well. After implementing FedAvg [1],
the server fine-tunes the global model for only one epoch.
Baseline Method. We compare our DPFL with the plain
Fedavg [1] which does not add any noise on the shared
gradients. For fair comparison, the baseline method FedAvg
[1] also adopts the client selection strategy and the public
dataset fine-tuning as DPFL.
Privacy Attack Setup. For the sake of comparability, we
follow the experimental setup of [3]. The batch size of local
update in the privacy preservation experiments is set to 1 which
is the most simplest setting for DLG [3], [4] to recover training
data from the shared gradients.

B. Model Performance

Directly adding noise to the shared gradients leads to a sharp
drop of accuracy which destroys the utility of the model. In
order to evaluate the impact of DPFL on accuracy, we train a
model on MNIST which reaches 98.3% accuracy as a baseline
model and test the baseline model after allocating privacy
budget and adding noise with and without DPFL. In DPFL,
privacy budget is allocated according to the importance value
PoGZ of layers. For adding noise without DPFL, the privacy
budget is allocated evenly between all layers, for example, if
there is three layers in the model, each layer gets a privacy
budget of (1/3) × ϵ. The experiment consists of three steps

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

8

TABLE II
PERFORMANCE OF DPFL.

ϵ Baseline accuracy
w/wo DPFL

Proportion of Promotion
w wo

ϵ = 0.5 98.3% 11.7% 10.3 % 13.6%
ϵ = 1.0 98.3% 26.4% 16.1% 64.0%
ϵ = 5.0 98.3% 89.4% 40.0% 123.5%
ϵ = 10.0 98.3% 97.6% 70.8% 37.9%

TABLE III
ACCURACY OF GLOBAL MODEL IN FEDERATED LEARNING.

Dataset Baseline DPFL (ϵ = 0.5) DPFL (ϵ = 1.0) DPFL (ϵ = 5.0) DPFL (ϵ = 10.0)
MNIST 95.2% 88.8% 89.0% 95.2% 95.3%

Fashion-MNIST 84.9% 78.8% 80.8% 83.8% 84.9%
CIFAR10 45.1% 10.0% 10.0% 45.2% 45.1%

as follow: (1) Calculate the importance value PoGZ of the
baseline model with validation set. (2) Train the baseline
model on the whole train dataset for one epoch and add noise
on the gradients. (3) Update the baseline model with the noised
gradients and test the accuracy on test set.

From Table II, we can observe that allocating privacy budget
with DPFL largely improves the model performance compared
with evenly allocation. When ϵ = 10.0, the model adding
noise with DPFL reaches 97.6% which is 0.7% lower than
the baseline model without noise, while the accuracy is 70.8%
with allocating privacy budget evenly. When ϵ = 5.0, the
accuracy of DPFL is about 89.4%, while it is 40.0% without
DPFL and the proportion of promotion is 123.5%. Besides,
we can also observe that the accuracy of DPFL rises with the
grow of privacy budget.

However, it is worth noting that in FL, the noise will be
injected in every global epoch and the server will average the
noisy shared gradients from different clients so that the noise
will have greater impact on the accuracy of the new global
model. We test the global model accuracy of DPFL and plain
FedAvg [1] on MNIST and Fashion-MNIST in non-i.i.d FL
setting under different privacy budgets.

The results of the experiments are shown in Figure 4 and Ta-
ble III. We can observe that for MNIST when ϵ ∈ {5.0, 10.0},
DPFL can achieve a similar accuracy as the baseline (95.2%).
When ϵ ∈ {0.5, 1.0}, more noise is needed to guarantee
privacy and the accuracy drops slightly (88.8% for ϵ = 0.5
and 89.0% for ϵ = 1.0).

Similarly, as shown in Figure 5, for Fashion-MNIST, DPFL
performs as well as the baseline model which reaches 84.9%
when ϵ ∈ {5.0, 10.0} (83.8% for ϵ = 5.0 and 84.9% for
ϵ = 10.0). And the accuracy has a moderately decline when
ϵ ∈ {0.5, 1.0} (78.8% for ϵ = 0.5 and 80.8% for ϵ = 1.0).

For CIFAR10, we test the accuracy of DPFL in i.i.d setting.
From Table III and Figure 6, we can observe that when ϵ ∈
{5.0, 10.0} the accuracy of DPFL rises slower than baseline
but finally rises to 45.2% and 45.1% (the baseline is 45.1%).

However, when ϵ ∈ {0.5, 1.0}, more noise is introduced and
DPFL can not guarantee the accuracy. It is a trade-off between
privacy and model performance.

C. Privacy Preservation

We test the model’s defense against DLG with euclidean
distance cost function [3] under different privacy budgets
ϵ ∈ {0.5, 1.0, 5.0, 10.0}. As shown in Figure 7, when ϵ ∈
{0.5, 1.0, 5.0, 10.0}, DPFL can prevent the training data re-
covery on MNIST, Fashion-MNIST, and CIFAR10. As shown
in Figure 8, when the privacy budget is more tightened, the
loss of DLG is much more greater which means it is harder for
DLG to recover training data from the shared gradients. And
we also test DPFL against the state-of-the-art DLG with the
loss function in the form of cosine similarity [4]. As shown
in Figure 9, DPFL can still protect data privacy.

Besides, in order to illustrate the necessity of adding noise
on all layers, we also perform the state-of-the-art DLG [4]
when the client only adds noise on part of layers of the
gradients. The shared gradients still satisfies DP according to
the composition property of DP when some layers are without
noise. The research of Geiping J et al. [4] proved that the
input to any fully connected layer can be reconstructed an-
alytically independent of the remaining network architecture.
That means it is necessary to add noise on the fully connected
layers. However as shown in Figure 1(b), when only adding
noise on fully connected layers, training data can be easily
recovered with the gradients of convolutional layers. And as
Figure 10 shows, when noise is only injected into the CONV1
and FC layers or CONV2 and FC layers, the leakage can still
be performed. Only when noise is injected into all the layers,
DLG [4] can not recover local data form the shared gradients.
Thus, it is necessary to add noise on all layers of gradients.

D. Efficiency

We test the computation consumption of DPFL and LIP
[6] during the FL training phase. It is worth noting that the

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

9

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(a) ϵ = 0.5

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(b) ϵ = 1.0

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(c) ϵ = 5.0

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(d) ϵ = 10.0

Fig. 4. Accuracy on MNIST (non-i.i.d). When ϵ ∈ {5.0, 10.0}, DPFL can achieve a similar accuracy to the baseline which is without any noise. When
ϵ ∈ {0.5, 1.0}, the accuracy of DPFL drops slightly.

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(a) ϵ = 0.5

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(b) ϵ = 1.0

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(c) ϵ = 5.0

0 200 400 600 800 1000
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(d) ϵ = 10.0

Fig. 5. Accuracy on Fashion-MNIST (non-i.i.d). DPFL performs well when ϵ ∈ {5.0, 10.0}, and there is a slight drop when ϵ ∈ {0.5, 1.0}.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

10

0 200 400 600 800 1000
Epoch

0

10

20

30

40

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(a) ϵ = 0.5

0 200 400 600 800 1000
Epoch

0

10

20

30

40

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(b) ϵ = 1.0

0 200 400 600 800 1000
Epoch

0

10

20

30

40

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(c) ϵ = 5.0

0 200 400 600 800 1000
Epoch

0

10

20

30

40

A
cc

ur
ac

y
(%

)

DPFL
Baseline

(d) ϵ = 10.0

Fig. 6. Accuracy on CIFAR10 (i.i.d). When ϵ ∈ {5.0, 10.0}, DPFL remains a similar accuracy to the baseline. When ϵ ∈ {0.5, 1.0}, DPFL can not remain
the model performance since more noise is introduced.

iter=0 iter=100 iter=500 iter=1000 iter=2000 iter=0 iter=100 iter=500 iter=1000 iter=2000 iter=0 iter=1000 iter=5000 iter=10000 iter=20000 iter=24000

CIFAR10Fashion-MNISTMNIST

Baseline

DPFL

DPFL

DPFL

DPFL

Fig. 7. Defense against DLG [3] with a euclidean distance as the loss function. The noise is injected into all the layers of the shared gradients with DPFL.
The adversary tries to recover local data from the gradients and the leakage can not be preformed.

TABLE IV
COMPUTATION CONSUMPTION OF ADDING NOISE (MS).

The model of MNIST The model of CIFAR10
DPFL 4.08 ms 5.12 ms
LIP 1,508.98 ms 2,070.39 ms

pre-training phase of DPFL and LIP [6] on every client site
is executed parallel in FL. And compared with the compu-
tation consumption of hundreds of global update epochs, the

computation consumption of pre-training is negligible.

As shown in Table IV, the average time of adding Lapla-
cian noise on gradients with LIP [6] is 1, 508.98ms and
2, 070.39ms for the two different models we use for MNIST
and CIFAR10. And for DPFL, the time is 4.08ms and 5.12ms
which means DPFL has a great advantage of the calculation
efficiency on client sites. Even if DPFL needs fine-tuning the
global model on the server, the total computation consumption
of adding noise with DPFL and fine-tuning is still less than
LIP [6] as it shown in Figure 11.

In general, DPFL can protect local training data from the

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

11

0 100 200 300 400 500

850

860

870

0 100 200 300 400 500
11.0

11.1

11.2

0 100 200 300 400 500

2.00

2.05

2.10

0 100 200 300 400 500

0.1124

0.1126

0 100 200 300 400 500
0.0000

0.0001

0.0002

MNIST

 = 0.5 = 1.0 = 5.0 = 10.0 baseline

0 100 200 300 400 500

338

339

0 100 200 300 400 500

30.4

30.6

0 100 200 300 400 500
1.833

1.834

1.835

1.836

0 100 200 300 400 500

0.3040

0.3045

0 100 200 300 400 500
0.00000

0.00005

0.00010

Fashion-MNIST

0 200 400 600 800 1000
650

700

750

800

0 200 400 600 800 1000
400

450

500

550

0 200 400 600 800 1000

30

40

50

0 200 400 600 800 1000

10

20

30

0 200 400 600 800 1000
0

10

20

CIFAR10

Fig. 8. Loss of DLG [3] with a euclidean distance loss function. We observe that the noised gradients makes the loss of DLG [3] converge to a large value
which means it is harder for the adversary to recover the training data.

iter=0 iter=100 iter=500 iter=1000 iter=2000 iter=0 iter=100 iter=500 iter=1000 iter=2000 iter=0 iter=1000 iter=5000 iter=10000 iter=20000 iter=24000

CIFAR10Fashion-MNISTMNIST

Baseline

DPFL

DPFL

DPFL

DPFL

Fig. 9. Defense against DLG [4] with a cosine similarity loss function. DPFL still provides privacy guarantee.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

12

 iter=0 iter=10 iter=50 iter=100 iter=500iter=0 iter=10 iter=50 iter=100 iter=500

Add noise on CONV2 and FCAdd noise on CONV1 and FC

DPFL

DPFL

DPFL

DPFL

Fig. 10. Defense against DLG [4] when only part of the model is noised. The adversary tries to recover local data from the shard gradients when only (1)
CONV1 and FC layers (2) CONV2 and FC layers are injected with noise. The leakage can still be performed when some layers are not under protection.

0 20 40 60 80
Epoch

0

200

400

600

800

1000

C
om

pu
ta

tio
n

co
ns

um
pt

io
n

(m
s)

DPFL
LIP

(a) MNIST

0 20 40 60 80
Epoch

200

400

600

800

1000

1200

DPFL
LIP

(b) CIFAR10

Fig. 11. Computational consumption of DPFL and LIP for model training.

state-of-the-art DLG attack [3], [4] while remaining high
model performance and efficiency.

VI. CONCLUSION

Although federated learning largely improves the level of
data security, sharing gradients still faces huge privacy chal-
lenges, e.g., deep leakage from gradients (DLG) [3], [4]. In this
paper, we proposed an efficient and fine-grained differential
privacy federated learning (DPFL) scheme, to protect shared
gradients of local clients while preserving model performance
and efficiency. Specifically, we proposed a fine-grained method
to allocate the privacy budget according to the importance of
layers. We also adopted an active client selection strategy [13]
and fine-tuned the global model to further improve efficiency
and model accuracy. We evaluated our DPFL on three bench-
mark datasets under both i.i.d. and non-i.i.d. scenarios. The
results showed that our method can preserve data privacy while
maintaining high accuracy and efficiency.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant 62171248, the
Guangdong Basic and Applied Basic Research Foundation un-
der Grant 2019A1515110644, the China Postdoctoral Science
Foundation under Grant 2020M670374, the R&D Program

of Shenzhen under Grant JCYJ20180508152204044, and the
PCNL KEY project (PCL2021A07).

VII. REFERENCES SECTION

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017, pp. 1273–1282.

[2] M. A. Rahman, T. Rahman, R. Laganière, and N. Mohammed, “Member-
ship inference attack against differentially private deep learning model,”
Trans. Data Priv., pp. 61–79, 2018.

[3] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in NeurIPS,
2019, pp. 14 747–14 756.

[4] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients - how easy is it to break privacy in federated learning?” in
NeurIPS, 2020.

[5] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and
verifiable federated learning,” IEEE Trans. Inf. Forensics Secur., pp. 911–
926, 2020.

[6] X. Liu, H. Li, G. Xu, S. Liu, Z. Liu, and R. Lu, “PADL: privacy-aware
and asynchronous deep learning for iot applications,” IEEE Internet
Things J., pp. 6955–6969, 2020.

[7] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
ACM SIGSAC, 2016, pp. 308–318.

[8] Z. Bu, J. Dong, Q. Long, and W. J. Su, “Deep learning with gaussian
differential privacy,” Harvard data science review, 2020.

[9] C. Dwork, “Differential privacy,” in ICALP, 2006, pp. 1–12.
[10] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating noise

to sensitivity in private data analysis,” in TCC, 2006, pp. 265–284.
[11] C. Dwork, “A firm foundation for private data analysis,” Commun. ACM,

pp. 86–95, 2011.
[12] C. Dwork and A. Roth, “The algorithmic foundations of differential

privacy,” Found. Trends Theor. Comput. Sci., pp. 211–407, 2014.
[13] J. Goetz, K. Malik, D. Bui, S. Moon, H. Liu, and A. Kumar, “Active

federated learning,” arXiv preprint arXiv:1909.12641, 2019.
[14] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated

learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[15] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for
differential privacy,” in ICML, 2015, pp. 1376–1385.

[16] F. McSherry and K. Talwar, “Mechanism design via differential privacy,”
in FOCS, 2007, pp. 94–103.

[17] J. Bai, Y. Li, J. Li, X. Yang, Y. Jiang, and S.-T. Xia, “Multinomial
random forest,” Pattern Recognition, p. 108331, 2021.

[18] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[19] X. Yao, T. Huang, R.-X. Zhang, R. Li, and L. Sun, “Federated learning
with unbiased gradient aggregation and controllable meta updating,”
arXiv preprint arXiv:1910.08234, 2019.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3131258, IEEE Internet of
Things Journal

13

[20] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Secur., pp. 3454–
3469, 2020.

[21] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, pp. 2278–
2324, 1998.

[23] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[24] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

Linghui Zhu received the B.S. degree in Computer
Science and Technology from Nankai University,
Tianjin, China, in 2020. She is currently pursuing the
master degree in Tsinghua Shenzhen International
Graduate School, Tsinghua University. Her research
interests are in the domain of the big data security
and federated learning.

Xinyi Liu received the B.S. degree in electronic
information engineering from School of Electronic
Information and Communications, Huazhong Uni-
versity of Science and Technology, Wuhan, China, in
2019. She is currently working toward the master’s
degree with Tsinghua Shenzhen International Gradu-
ate School, Tsinghua University, Beijing, China. Her
research interests include robust federated learning
and weakly supervised learning.

Yiming Li is currently a Ph.D. candidate from
Tsinghua-Berkeley Shenzhen Institute, Tsinghua
Shenzhen International Graduate School, Tsinghua
University. Before that, he received his B.S. de-
gree in Mathematics and Applied Mathematics from
Ningbo University in 2018. His research interests
are in the domain of AI security, especially backdoor
learning, adversarial learning, and data privacy. He is
the senior program committee member of AAAI’22
and the reviewer of TDSC, TCSVT, TII, etc.

Dr. Xue Yang received the Ph.D. degree in infor-
mation and communication engineering from South-
west Jiaotong University, China, in 2019. She was a
visiting student at the Faculty of Computer Science,
University of New Brunswick, Canada, from 2017 to
2018. She is currently a postdoctoral fellow with the
Tsinghua Shenzhen International Graduate School,
Tsinghua University, China. Her research interests
include big data security and privacy, applied cryp-
tography, and federated learning.

Dr. Shu-Tao Xia received the B.S. degree in math-
ematics and the Ph.D. degree in applied mathe-
matics from Nankai University, Tianjin, China, in
1992 and 1997, respectively. Since January 2004,
he has been with the Graduate School at Shenzhen
of Tsinghua University, Guangdong, China, where
he became a full professor in 2007. From March
1997 to April 1999, he was with the research group
of information theory, Department of Mathematics,
Nankai University, Tianjin, China. From September
1997 to March 1998 and from August to September

1998, he visited the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong. His current research interests include
coding and information theory, networking, machine learning and computer
vision. He published more than one hundred papers on peer-reviewed journals
and conferences, including TIT, TSP, TCOM, TNNLS, NeurIPS/ICML/ICLR,
CVPR/ICCV/ECCV, etc.

Dr. Rongxing Lu is currently an associate professor
at the Faculty of Computer Science (FCS), Univer-
sity of New Brunswick (UNB), Canada. He is a Fel-
low of IEEE. His research interests include applied
cryptography, privacy enhancing technologies, and
IoT-Big Data security and privacy. He has published
extensively in his areas of expertise, and was the
recipient of 9 best (student) paper awards from some
reputable journals and conferences. Currently, Dr.
Lu serves as the Vice-Chair (Conferences) of IEEE
ComSoc CIS-TC (Communications and Information

Security Technical Committee). Dr. Lu is the Winner of 2016-17 Excellence
in Teaching Award, FCS, UNB.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.

